Inequalities for Differentiable Reproducing Kernels and an Application to Positive Integral Operators
نویسندگان
چکیده
Let I ⊆ R be an interval and let k : I2 → C be a reproducing kernel on I . We show that if k(x, y) is in the appropriate differentiability class, it satisfies a 2-parameter family of inequalities of which the diagonal dominance inequality for reproducing kernels is the 0th order case. We provide an application to integral operators: if k is a positive definite kernel on I (possibly unbounded) with differentiability class n(I) and satisfies an extra integrability condition, we show that eigenfunctions are Cn(I) and provide a bound for its Sobolev Hn norm. This bound is shown to be optimal.
منابع مشابه
New inequalities for a class of differentiable functions
In this paper, we use the Riemann-Liouville fractionalintegrals to establish some new integral inequalities related toChebyshev's functional in the case of two differentiable functions.
متن کاملError bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملReproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators
In this paper we extend the definition of generalized Sobolev space and subsequent theoretical results established recently for positive definite kernels and differential operators in the article [21]. In the present paper the semi-inner product of the generalized Sobolev space is set up by a vector distributional operator P consisting of finitely or countably many distributional operators Pn, ...
متن کاملA Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type
In this paper, we generalize the Meir-Keeler condensing operators via a concept of the class of operators $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems. As an application of this extension, we analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally, we p...
متن کاملInitial value problems in linear integral operator equations ∗
For some general linear integral operator equations, we investigate consequent initial value problems by using the theory of reproducing kernels. A new method is proposed which – in particular – generates a new field among initial value problems, linear integral operators, eigenfunctions and values, integral transforms and reproducing kernels. In particular, examples are worked out for the inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006